Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 11 de 11
Filter
1.
Virol J ; 19(1): 197, 2022 11 25.
Article in English | MEDLINE | ID: covidwho-2139346

ABSTRACT

Currently, the majority of the global population has been vaccinated with the COVID-19 vaccine, and characterization studies of antibodies in vivo from Omicron breakthrough infection and naive infection populations are urgently needed to provide pivotal clues about accurate diagnosis, treatment, and next-generation vaccine design against SARS-CoV-2 infection. We showed that after infection with Omicron-BA.2, the antibody levels of specific IgM against the Wuhan strain and specific IgG against Omicron were not significantly elevated within 27 days of onset. Interestingly, in this study, the levels of humoral immunity against Omicron-specific IgM were significantly increased after breakthrough infection, suggesting that the detection of Omicron-specific IgM antibodies can be used as a test criterion of Omicron breakthrough infection. In addition, we observed that serums from unvaccinated individuals and the majority of vaccinated infections possessed only low or no neutralizing activity against Omicron at the onset of Omicron breakthrough infections, and at the later stage of Omicron-BA.2 breakthrough infection, levels of neutralization antibody against the Wuhan and Omicron strains were elevated in infected individuals. The findings of this study provide important clues for the diagnosis of Omicron breakthrough infections, antibody characterization studies and vaccine design against COVID-19.


Subject(s)
Antibody Formation , COVID-19 , Humans , SARS-CoV-2 , Antibodies, Viral , COVID-19 Vaccines , Immunoglobulin M
2.
J Med Virol ; 94(12): 6065-6072, 2022 Dec.
Article in English | MEDLINE | ID: covidwho-1976738

ABSTRACT

Various variants of the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) have been emerging and circulating in different parts of the world. Millions of vaccine doses have been administered globally, which reduces the morbidity and mortality of coronavirus disease-2019 efficiently. Here, we assess the immune responses of individuals after two shots of BBIBP-CorV or CoronaVac inactivated vaccine. We measured neutralizing antibody responses after the second vaccination by using authentic SARS-CoV-2 and its viral variants. All the serum samples efficiently neutralized SARS-CoV-2 wild-type lineage, in contrast, a part of serum samples failed to neutralize Alpha, Beta, Gamma, Delta, or Eta lineages, and only several serum samples were able to neutralize Omicron lineage virus strains (BA.1 and BA.2) with low neutralization titer. As compared with the neutralization of SARS-CoV-2 wild-type lineage, the neutralization of all other SARS-CoV-2 variant lineages was significantly lower. Considering that all the SARS-CoV-2 mutation viruses challenged the antibody neutralization induced by BBIBP-CorV and CoronaVac, it is necessary to carry out a third booster vaccination to increase the humoral immune response against the SARS-CoV-2 mutation viruses.


Subject(s)
COVID-19 , Viral Vaccines , Antibodies, Neutralizing , Antibodies, Viral , COVID-19/prevention & control , COVID-19 Vaccines , Humans , SARS-CoV-2/genetics , Vaccines, Inactivated
3.
Ann Intern Med ; 175(4): 533-540, 2022 04.
Article in English | MEDLINE | ID: covidwho-1912072

ABSTRACT

BACKGROUND: Real-world evidence on inactivated COVID-19 vaccines against the highly transmissible B.1.617.2 (Delta) variant of SARS-CoV-2 is limited, leaving an important gap in the evidence base about inactivated COVID-19 vaccines for use by immunization programs. OBJECTIVE: To estimate inactivated vaccine effectiveness (VE) against the B.1.617.2 variant. DESIGN: Retrospective cohort study. SETTING: The study was based on the first outbreak of the B.1.617.2 variant in mainland China that was discovered and traced in Guangdong in May and June 2021. PARTICIPANTS: 10 805 adult case patients with laboratory-confirmed infection and close contacts. MEASUREMENTS: Participants were categorized as unvaccinated, partially vaccinated (1 dose), and fully vaccinated (2 doses). We estimated VE against the primary outcome of pneumonia and the secondary outcomes of infections, symptomatic infections, and severe or critical illness associated with the B.1.617.2 variant. RESULTS: Results are reported in the order of outcome severity. Of 10 805 participants, 1.3% contracted infections, 1.2% developed symptomatic infections, 1.1% had pneumonia, and 0.2% had severe or critical illness. The adjusted VEs of full vaccination were 51.8% (95% CI, 20.3% to 83.2%) against infection, 60.4% (CI, 31.8% to 88.9%) against symptomatic infection, and 78.4% (CI, 56.9% to 99.9%) against pneumonia. Also, full vaccination was 100% (CI, 98.4% to 100.0%) effective against severe or critical illness. By contrast, the adjusted VEs of partial vaccination against infection, symptomatic infection, and pneumonia were 10.7% (CI, -41.2% to 62.6%), 6.8% (CI, -47.4% to 61.0%), and 11.6% (CI, -42.6% to 65.8%), respectively. LIMITATION: Observational study with possible unmeasured confounders; insufficient data to do reliable subgroup analyses by age and vaccine brand. CONCLUSION: Full vaccination with inactivated vaccines is effective against the B.1.617.2 variant. Effort should be made to ensure full vaccination of target populations. PRIMARY FUNDING SOURCE: National Natural Science Foundation of China and Key-Area Research and Development Program of Guangdong Province.


Subject(s)
COVID-19 Vaccines , COVID-19 , Adult , COVID-19/epidemiology , COVID-19/prevention & control , Cohort Studies , Critical Illness , Humans , Retrospective Studies , SARS-CoV-2/genetics , Vaccines, Inactivated
4.
Natl Sci Rev ; 9(4): nwac004, 2022 Apr.
Article in English | MEDLINE | ID: covidwho-1821757

ABSTRACT

The SARS-CoV-2 B.1.617.2 (Delta) variant flared up in late May in Guangzhou, China. Transmission characteristics of Delta variant were analysed for 153 confirmed cases and two complete transmission chains with seven generations were fully presented. A rapid transmission occurred in five generations within 10 days. The basic reproduction number (R0) was 3.60 (95% confidence interval: 2.50-5.30). After redefining the concept of close contact, the proportion of confirmed cases discovered from close contacts increased from 43% to 100%. With the usage of a yellow health code, the potential exposed individuals were self-motivated to take a nucleic acid test and regained public access with a negative testing result. Facing the massive requirement of screening, novel facilities like makeshift inflatable laboratories were promptly set up as a vital supplement and 17 cases were found, with 1 pre-symptomatic. The dynamic adjustment of these three interventions resulted in the decline of Rt from 5.00 to 1.00 within 9 days. By breaking the transmission chain and eliminating the transmission source through extending the scope of the close-contact tracing, health-code usage and mass testing, the Guangzhou Delta epidemic was effectively contained.

5.
Chin Med J (Engl) ; 134(16): 1967-1976, 2021 07 22.
Article in English | MEDLINE | ID: covidwho-1769434

ABSTRACT

BACKGROUND: Innovative coronavirus disease 2019 (COVID-19) vaccines, with elevated global manufacturing capacity, enhanced safety and efficacy, simplified dosing regimens, and distribution that is less cold chain-dependent, are still global imperatives for tackling the ongoing pandemic. A previous phase I trial indicated that the recombinant COVID-19 vaccine (V-01), which contains a fusion protein (IFN-PADRE-RBD-Fc dimer) as its antigen, is safe and well tolerated, capable of inducing rapid and robust immune responses, and warranted further testing in additional clinical trials. Herein, we aimed to assess the immunogenicity and safety of V-01, providing rationales of appropriate dose regimen for further efficacy study. METHODS: A randomized, double-blind, placebo-controlled phase II clinical trial was initiated at the Gaozhou Municipal Centre for Disease Control and Prevention (Guangdong, China) in March 2021. Both younger (n = 440; 18-59 years of age) and older (n = 440; ≥60 years of age) adult participants in this trial were sequentially recruited into two distinct groups: two-dose regimen group in which participants were randomized either to follow a 10 or 25 µg of V-01 or placebo given intramuscularly 21 days apart (allocation ratio, 3:3:1, n = 120, 120, 40 for each regimen, respectively), or one-dose regimen groups in which participants were randomized either to receive a single injection of 50 µg of V-01 or placebo (allocation ratio, 3:1, n = 120, 40, respectively). The primary immunogenicity endpoints were the geometric mean titers of neutralizing antibodies against live severe acute respiratory syndrome coronavirus 2, and specific binding antibodies to the receptor binding domain (RBD). The primary safety endpoint evaluation was the frequencies and percentages of overall adverse events (AEs) within 30 days after full immunization. RESULTS: V-01 provoked substantial immune responses in the two-dose group, achieving encouragingly high titers of neutralizing antibody and anti-RBD immunoglobulin, which peaked at day 35 (161.9 [95% confidence interval [CI]: 133.3-196.7] and 149.3 [95%CI: 123.9-179.9] in 10 and 25 µg V-01 group of younger adults, respectively; 111.6 [95%CI: 89.6-139.1] and 111.1 [95%CI: 89.2-138.4] in 10 and 25 µg V-01 group of older adults, respectively), and remained high at day 49 after a day-21 second dose; these levels significantly exceed those in convalescent serum from symptomatic COVID-19 patients (53.6, 95%CI: 31.3-91.7). Our preliminary data show that V-01 is safe and well tolerated, with reactogenicity predominantly being absent or mild in severity and only one vaccine-related grade 3 or worse AE being observed within 30 days. The older adult participants demonstrated a more favorable safety profile compared with those in the younger adult group: with AEs percentages of 19.2%, 25.8%, 17.5% in older adults vs. 34.2%, 23.3%, 26.7% in younger adults at the 10, 25 µg V-01 two-dose group, and 50 µg V-01 one-dose group, respectively. CONCLUSIONS: The vaccine candidate V-01 appears to be safe and immunogenic. The preliminary findings support the advancement of the two-dose, 10 µg V-01 regimen to a phase III trial for a large-scale population-based evaluation of safety and efficacy. TRIAL REGISTRATION: http://www.chictr.org.cn/index.aspx (No. ChiCTR2100045107, http://www.chictr.org.cn/showproj.aspx?proj=124702).


Subject(s)
COVID-19 , Aged , Antibodies, Viral , COVID-19/therapy , COVID-19 Vaccines , Double-Blind Method , Humans , Immunization, Passive , Recombinant Fusion Proteins , SARS-CoV-2 , COVID-19 Serotherapy
6.
Nat Commun ; 13(1): 460, 2022 01 24.
Article in English | MEDLINE | ID: covidwho-1651070

ABSTRACT

The SARS-CoV-2 Delta variant has spread rapidly worldwide. To provide data on its virological profile, we here report the first local transmission of Delta in mainland China. All 167 infections could be traced back to the first index case. Daily sequential PCR testing of quarantined individuals indicated that the viral loads of Delta infections, when they first become PCR-positive, were on average ~1000 times greater compared to lineage A/B infections during the first epidemic wave in China in early 2020, suggesting potentially faster viral replication and greater infectiousness of Delta during early infection. The estimated transmission bottleneck size of the Delta variant was generally narrow, with 1-3 virions in 29 donor-recipient transmission pairs. However, the transmission of minor iSNVs resulted in at least 3 of the 34 substitutions that were identified in the outbreak, highlighting the contribution of intra-host variants to population-level viral diversity during rapid spread.


Subject(s)
COVID-19/transmission , Contact Tracing/methods , Disease Outbreaks/prevention & control , SARS-CoV-2/isolation & purification , Animals , COVID-19/epidemiology , COVID-19/virology , Chlorocebus aethiops , Humans , RNA-Seq/methods , Reverse Transcriptase Polymerase Chain Reaction , SARS-CoV-2/genetics , SARS-CoV-2/physiology , Time Factors , Vero Cells , Viral Load/genetics , Viral Load/physiology , Virus Replication/genetics , Virus Replication/physiology , Virus Shedding/genetics , Virus Shedding/physiology
8.
Emerg Microbes Infect ; 10(1): 1589-1597, 2021 Dec.
Article in English | MEDLINE | ID: covidwho-1354261

ABSTRACT

Safe and effective vaccines are still urgently needed to cope with the ongoing COVID-19 pandemic. Recently, we developed a recombinant COVID-19 vaccine (V-01) containing fusion protein (IFN-PADRE-RBD-Fc dimer) as antigen verified to induce protective immunity against SARS-CoV-2 challenge in pre-clinical study, which supported progression to Phase I clinical trials in humans. A Randomized, double-blind, placebo-controlled Phase I clinical trial was initiated at the Guangdong Provincial Center for Disease Control and Prevention (Gaozhou, China) in February 2021. Healthy adults aged between 18 and 59 years and over 60 years were sequentially enrolled and randomly allocated into three subgroups (1:1:1) either to receive the vaccine (10, 25, and 50 µg) or placebo (V-01: Placebo = 4:1) intramuscularly with a 21-day interval by a sentinel and dose escalation design. The data showed a promising safety profile with approximately 25% vaccine-related overall adverse events (AEs) within 30 days and no grade 3 or worse AEs. Besides, V-01 provoked rapid and strong immune responses, elicited substantially high-titre neutralizing antibodies and anti-RBD IgG peaked at day 35 or 49 after first dose, presented with encouraging immunogenicity at low dose (10 µg) subgroup and elderly participants, which showed great promise to be used as all-aged (18 and above) vaccine against COVID-19. Taken together, our preliminary findings indicate that V-01 is safe and well tolerated, capable of inducing rapid and strong immune responses, and warrants further testing in Phase II/III clinical trials.


Subject(s)
Antibodies, Viral/blood , COVID-19 Vaccines/immunology , COVID-19/prevention & control , Immunogenicity, Vaccine , Interferons/immunology , Adolescent , Adult , Aged , Antibodies, Neutralizing/blood , COVID-19 Vaccines/administration & dosage , COVID-19 Vaccines/adverse effects , China , Double-Blind Method , Female , Humans , Immunoglobulin G/blood , Interferons/administration & dosage , Interferons/genetics , Male , Middle Aged , Placebos , Vaccination/adverse effects , Vaccines, Synthetic/administration & dosage , Vaccines, Synthetic/immunology , Young Adult
9.
Int J Infect Dis ; 103: 617-623, 2021 Feb.
Article in English | MEDLINE | ID: covidwho-1122329

ABSTRACT

OBJECTIVES: We aimed to estimate the time-varying transmission dynamics of COVID-19 in China, Wuhan City, and Guangdong province, and compare to that of severe acute respiratory syndrome (SARS). METHODS: Data on COVID-19 cases in China up to 20 March 2020 was collected from epidemiological investigations or official websites. Data on SARS cases in Guangdong Province, Beijing, and Hong Kong during 2002-3 was also obtained. We estimated the doubling time, basic reproduction number (R0), and time-varying reproduction number (Rt) of COVID-19 and SARS. RESULTS: As of 20 March 2020, 80,739 locally acquired COVID-19 cases were identified in mainland China, with most cases reported between 20 January and 29 February 2020. The R0 value of COVID-19 in China and Wuhan was 5.0 and 4.8, respectively, which was greater than the R0 value of SARS in Guangdong (R0 = 2.3), Hong Kong (R0 = 2.3), and Beijing (R0 = 2.6). At the start of the COVID-19 epidemic, the Rt value in China peaked at 8.4 and then declined quickly to below 1.0 in one month. With SARS, the Rt curve saw fluctuations with more than one peak, the highest peak was lower than that for COVID-19. CONCLUSIONS: COVID-19 has much higher transmissibility than SARS, however, a series of prevention and control interventions to suppress the outbreak were effective. Sustained efforts are needed to prevent the rebound of the epidemic in the context of the global pandemic.


Subject(s)
COVID-19/transmission , Public Health , SARS-CoV-2 , Basic Reproduction Number , COVID-19/epidemiology , COVID-19/prevention & control , China/epidemiology , Disease Outbreaks , Humans
10.
Ann Intern Med ; 173(12): 974-980, 2020 12 15.
Article in English | MEDLINE | ID: covidwho-738264

ABSTRACT

BACKGROUND: The role of fecal aerosols in the transmission of severe acute respiratory syndrome coronavirus 2 has been suspected. OBJECTIVE: To investigate the temporal and spatial distributions of 3 infected families in a high-rise apartment building and examine the associated environmental variables to verify the role of fecal aerosols. DESIGN: Epidemiologic survey and quantitative reverse transcriptase polymerase chain reaction analyses on throat swabs from the participants; 237 surface and air samples from 11 of the 83 flats in the building, public areas, and building drainage systems; and tracer gas released into bathrooms as a surrogate for virus-laden aerosols in the drainage system. SETTING: A high-rise apartment building in Guangzhou, China. PARTICIPANTS: 9 infected patients, 193 other residents of the building, and 24 members of the building's management staff. MEASUREMENTS: Locations of infected flats and positive environmental samples, and spread of virus-laden aerosols. RESULTS: 9 infected patients in 3 families were identified. The first family had a history of travel to the coronavirus disease 2019 (COVID-19) epicenter Wuhan, whereas the other 2 families had no travel history and a later onset of symptoms. No evidence was found for transmission via the elevator or elsewhere. The families lived in 3 vertically aligned flats connected by drainage pipes in the master bathrooms. Both the observed infections and the locations of positive environmental samples are consistent with the vertical spread of virus-laden aerosols via these stacks and vents. LIMITATION: Inability to determine whether the water seals were dried out in the flats of the infected families. CONCLUSION: On the basis of circumstantial evidence, fecal aerosol transmission may have caused the community outbreak of COVID-19 in this high-rise building. PRIMARY FUNDING SOURCE: Key-Area Research and Development Program of Guangdong Province and the Research Grants Council of Hong Kong.


Subject(s)
Aerosols/adverse effects , COVID-19/transmission , Disease Transmission, Infectious/statistics & numerical data , RNA, Viral/analysis , SARS-CoV-2/genetics , COVID-19/epidemiology , China/epidemiology , Feces/virology , Humans , Retrospective Studies
11.
Emerg Microbes Infect ; 9(1): 1546-1553, 2020 Dec.
Article in English | MEDLINE | ID: covidwho-627739

ABSTRACT

This study aimed to estimate the attack rates, and identify the risk factors of COVID-19 infection. Based on a retrospective cohort study, we investigated 11,580 contacts of COVID-19 cases in Guangdong Province from 10 January to 15 March 2020. All contacts were tested by RT-PCR to detect their infection of SARS-COV-2. Attack rates by characteristics were calculated. Logistic regression was used to estimate the risk factors of infection for COVID-19. A total of 515 of 11,580 contacts were identified to be infected with SARS-COV-2. Compared to young adults aged 20-29 years, the infected risk was higher in children (RR: 2.59, 95%CI: 1.79-3.76), and old people aged 60-69 years (RR: 5.29, 95%CI: 3.76-7.46). Females also had higher infected risk (RR: 1.66, 95%CI: 1.39-2.00). People having close relationship with index cases encountered higher infected risk (RR for spouse: 20.68, 95%CI: 14.28-29.95; RR for non-spouse family members: 9.55, 95%CI: 6.73-13.55; RR for close relatives: 5.90, 95%CI: 4.06-8.59). Moreover, contacts exposed to index case in symptomatic period (RR: 2.15, 95%CI: 1.67-2.79), with critically severe symptoms (RR: 1.61, 95%CI: 1.00-2.57), with symptoms of dizzy (RR: 1.58, 95%CI: 1.08-2.30), myalgia (RR: 1.49, 95%CI: 1.15-1.94), and chill (RR: 1.42, 95%CI: 1.05-1.92) had higher infected risks. Children, old people, females, and family members are susceptible of COVID-19 infection, while index cases in the incubation period had lower contagiousness. Our findings will be helpful for developing targeted prevention and control strategies to combat the worldwide pandemic.


Subject(s)
Contact Tracing , Coronavirus Infections/transmission , Pneumonia, Viral/transmission , Adolescent , Adult , Age Factors , Aged , Aged, 80 and over , COVID-19 , Child , Child, Preschool , China , Cohort Studies , Disease Susceptibility , Female , Humans , Infant , Infant, Newborn , Male , Middle Aged , Pandemics , Quarantine , Retrospective Studies , Risk Factors , Young Adult
SELECTION OF CITATIONS
SEARCH DETAIL